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Motor-mediated alignment of microtubules in semidilute mixtures
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We propose and study a model of molecular motor-induced ordering in a cytoskeletal filament solution for
the semidilute case. Motors attach to a pair of filaments and walk along the pair bringing them into closer
alignment. In the semidilute regime multiple motors can bind a filament to several others and, for a critical
motor density, induce a transition to an ordered phase with a nonzero mean orientation. The motors, on the one
hand, cause closer filament alignment, and, on the other hand, induce fluctuations that are dependent on the
relative orientation of the filaments to which the motors are attached. We develop a spatially homogenous,
mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn
affects the mean and the fluctuations of the net force acting on a filament. This model considers each filament
to be in motor contact with all other filaments in the solution. We show that the transition to the oriented state
changes from second order to first order when the force-dependent detachment becomes important.
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I. INTRODUCTION

The dynamics and self-organization of the cytoskeleton
[1] is an important subject of study in the biological sciences
as well as in soft matter physics as a natural realization of an
out-of-equilibrium complex fluid. In the presence of the en-
ergy source ATP (Adenosine triphosphate), self-organized
structures [2-9] and out-of equilibrium fluctuations [10-12]
have been observed experimentally as well as in theoretical
models.

The essential picture involves interactions between fila-
ments mediated by molecular motors in the following man-
ner. A multiheaded molecular motor (or oligomer comprised
of several single-headed motors) attaches to a pair of fila-
ments and, by converting the chemical energy of ATP into
mechanical energy, walks along the pair while exerting a
force that brings the pair into closer alignment. Examples of
such motors include artificial oligomers of kinesin-type [4]
or natural bipolar Eg5 motors interacting with microtubules,
and myosin minifilaments [5,13] interacting with actin.

In the highly dilute case, binary interactions between mo-
tors and filaments are dominant. However, in the semidilute
regime multiple motors can bind a filament to several other
filaments. When a critical motor density is reached, these
interactions induce a transition to an ordered phase with a
nonzero mean orientation of filaments—the isotropic-polar
transition—with the final state referred to as the self-
organized anisotropy. A complete description of the dynam-
ics remains a formidable task, since it involves nonequilib-
rium  processes, intrinsic  nonlinearities,  structural
anisotropies, and a broad window of time scales, length
scales, and densities. For low filament densities, models
based on binary rod interactions have been proposed
[7,9,14—16], but in reality the cytosol is not sufficiently di-
lute to justify this approach [17]. Additionally, hydrodynamic
models have been formulated [6,18], but their validity is not
obvious, and the connections between the phenomenological
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parameters and the underlying microscopic mechanisms are
not yet known.

The structures found experimentally in cytoskeletal solu-
tions, such as asters and vortices, can be interpreted as the
topological defects of a homogeneous polar phase [9]. How
this polar phase arises out of an isotropic semidilute solution,
however, remains an open question. In this study, we try to
fill this gap and formulate a model for the semidilute regime
in which the filament density is too high for two-particle
interaction models to be valid but still below the isotropic-
nematic transition occurring for systems of passive aniso-
tropic particles [19]. We use a Landau-Lifshitz-type equation
[20] and in our modeling take advantage of knowledge stem-
ming from recently developed models for the alignment of
two filaments [21,22]. Since most experimental studies are
undertaken in a quasi-two-dimensional setting [4,5], we re-
strict ourselves to a two-dimensional solution of filaments
and motors. Specific effects that are taken into account in-
clude angle-dependent noise (due to intrinsic motor force
fluctuations) and force-dependent detachment of motors.

We show in a manner similar to the well-studied dilute
case that at high enough motor density the network of polar
filaments exhibits an orientational transition toward a polar
state. In our work, however, we explicitly take into account
the specifics of motor dynamics such as force-velocity rela-
tions and force-dependent detachment rates. Our main result
highlights the importance of the motor attachment dynamics
to the type of isotropic-polar transition: without force-
dependent detachment the transition is second order, whereas
with force-dependent detachment it can be first order. This is
in contrast to the usual phase transitions in two-dimensional
nematics, which are second order as can be seen from the
symmetry arguments of Landau and De Gennes [23]. Our
work also illustrates the importance of the intrinsic fluctua-
tions of motor forces (or, “effective temperature”) on the
macroscopic behavior of motor-filament solutions. We ac-
count for the fact that the corresponding effective tempera-
ture exceeds the thermodynamic temperature by at least 1
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FIG. 1. (Color online) (a) Multirod configuration showing the
interaction of the ith microtubule with all other microtubules in the
system. The dotted line indicates the direction of forcing due to all
binary interactions with the ith rod. (b) Depiction of motor-
mediated, binary microtubule interaction. Molecular motors attach
at the rod intersection point, zip across the length of the rods caus-
ing alignment, and detach.

order of magnitude and that therefore the motor-induced
fluctuations should be more important than the thermal fluc-
tuations. In principle, due to its multiplicative nature, motor
fluctuations could also promote ordering of filaments for
some parameter ranges (in contrast to thermal fluctuations).

The paper is structured as follows. In Sec. II, we discuss
the motor-filament interaction rules and develop the govern-
ing equations for the spatially homogeneous, motor-mediated
self-organization of microtubules. In Sec. III, we discuss the
limiting case in which the force-dependent detachment rate
is negligible. In this case a parameter-dependent threshold
exists above which the isotropic state undergoes a second-
order transition to an ordered state. In Sec. IV we show that
the inclusion of the force-dependent detachment rate can
cause a shift in the transition from second to first order. We
conclude in Sec. V with a discussion of results and open
questions.

II. MODEL AND ASSOCIATED FOKKER-PLANCK
EQUATION

A semidilute solution of microtubules or actin filament
bundles interacting via molecular motors is modeled as a
collection of N stiff rods of fixed length. In a two-
dimensional geometry, the position of each rod can be de-
scribed by an in-plane vector 7;, with i=1,...,N, or alterna-
tively by the angle ¢; measured with respect to the x axis; see
Fig. 1. We want to describe the overdamped dynamics of
polar rods that favors their alignment. The Landau-Lifshitz
model [20], originally developed to describe the precessional
motion of the magnetization in a ferromagnetic solid and
augmented by Gilbert [24], captures the universal form of
this type of dynamics regardless of its physical origin. Ac-
cording to this model, a rod of orientation 7 relaxes toward a
field F, which, coupled with the inextensibility requirement
(the length of the rod is conserved), leads to the following
equation of motion for the ith rod:

{ai=—1 X (7 X L,F) -7, X T, (1)

where ¢, is the rotational drag coefficient and /,, is the aver-
age motor run length.
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The mean field F represents the average force exerted on
the ith filament due to interactions with all other filaments.
We intend to study the case of high motor density; hence, for
a homogeneous filament solution, each rod is in motor con-
tact with every other rod, and the total number of rods, N, is
fixed. T is a thermal noise term given by

T= §of~ (2)

Here &, is the stochastic torque and Z is the unit vector per-
pendicular to the plane of the system. The stochastic force
has zero mean, (&,)=0, (brackets represent the ensemble av-
erage), and is assumed to be & correlated,

(&o(&(1)) = 2kpTL 01 —1"), 3)

where kT is the thermal energy. The stochastic torque, as
defined above, gives rise to rotational diffusion with diffu-
. . ksT
sion coefficient D,:?.

For the field F we use the following form:
N
F=2 rfoa+§). )
J=1

It is simply the sum of all microtubule interactions with the
ith tubule [refer to Fig. 1(a)]. As we do not account for
spatial variations, there are N—1 interactions. « is the aver-
age strength of the motor force and ¢ is the number of mo-
tors per filament pair. The stochastic term &; describes intrin-
sic fluctuations in the motor forces, and, unlike the thermal
noise &, is multiplicative.

During rod alignment, motors spanning the ith and the jth
filaments stretch as they move away from the filament inter-
section point, exert a force on the ij pair, and experience a
corresponding restoring force. When motors attach, they
quickly obtain a symmetric orientation perpendicular to the
bisecting line of any two interacting rods; see Fig. 1(b). This
is due first to the fact that we assume negligible bending
rigidity in the spring force which is supported by experimen-
tation [4]. Second, there is a well accepted force-velocity
relation [25-27] given by

F
Vig=V|1-2-).

st

where V), is the motor head velocity, F; is the projection of
the motor spring force on the direction of the rod, and F is
the so-called stall force. Thus, if the motor attaches asym-
metrically, the leading motor head (corresponding to the
larger distance from the filament intersection point) is slowed
down by the spring extension force while the trailing head is
accelerated, leading to fast relaxation toward a symmetric
configuration.

The number of motors o;; spanning a filament pair takes
the form

Kal
2

kT

Sm(ﬂi)’

: (5)

O-ij: gy expl\ —

where oy is the average number of motors per microtubule.
The exponential form in Eq. (5) is motivated by experimen-
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tal studies [28] and was developed in Refs. [29,30]; its effect
on the alignment of a pair of filaments by multiple motors
was recently studied theoretically in some detail in Ref. [22].
The argument of the exponential represents the ratio of the
motor stretching energy to the thermal energy kzT. The
stretching of the motor is expressed by the average distance /
(along the microtubule) between the motor position and the
intersection point of the two filaments [see Fig. 1(b)] and by
the angle between the filaments. « is the motor spring con-
stant, known to be on the order of 200-400 pN/um [31] for
kinesin motors, and a is a molecular length scale (a few nm).

The noise terms occurring in the motor force, Eq. (4), are
necessary to describe fluctuations in nonequilibrium systems
of active motors that can potentially induce an effective tem-
perature larger than the equilibrium (thermodynamic) tem-
perature [10-12,32]. Experiments in actin-myosin mixtures
[10] showed strong deviations from thermodynamic equilib-
rium behavior due to motor fluctuations. We assume (&(1))
=0 and

) e )
(&) =278t 1)y, (6)
for i,j=1,...,N. The noise amplitude is comprised of u

=kgT,, where T, is the effective (or active) temperature. The
effective temperature can be estimated in terms of the mean
motor force (F), motor step length (L), and kg as Taz%g.
Using known experimental values for kinesin-average motor
force, (F)=5 pN and average motor step length, (L)
=8 nm [33]—we estimate the effective temperature to be
=3000 K (approximately ten times room temperature),
which is consistent with [10,11].

If one interprets the components of the orientation vector
as the real and imaginary components of a complex number,
one can write 7=¢% and note the identities 7 X 7
=—sin(¢;—¢;)Z and 7; X {=—i7;, where Z is the unit normal to
the plane. The equation of motion can then be written in the
following compact Langevin-type form:

N N
L= CYE ofij+ zfikfkv (7)
j=1 k=0

with f;;=~1,, sin(¢;—¢;) and fp=1.

Since we assumed Gaussian white noise, this generalized
Langevin equation is stochastically equivalent to a Fokker-
Planck equation for the N particle probability density P™Y)(g)
with ¢=(¢,®s, ..., @y). We interpret the stochastic differen-
tial Eq. (7) in the Stratonovich sense. This is the natural
interpretation if one assumes, as usually is the case in physi-
cal systems, a high frequency cutoff for the spectral density
of the noise (see, e.g., [34] for a discussion of multiplicative
noise and Ito vs Stratonovich interpretations). One gets

N
d - kgT & .
—PM(g)=="=3 PM(g)
dt Lr i1 090 @)
L w3
al, . -
+—" 2 —T[o(@i- ¢)sin(¢; - ) PV(¢)]
& ijm1 0%
Yo
M .
+ =2 — sin(g;— @)
& ij 9@
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Jd . -
X —[sin(¢; - <p,)P<N>(<p)]} . (8)
A mean-field approximation is applied by assuming inde-
pendence of rods in the following manner: P™ (¢, ..., op)
=P(¢1)P(¢y)- - Plgn), where P(¢)=P" ()
=T PM(@,¢,,....,00)d¢s, ..., dey is the single-particle
distribution function. We now integrate Eq. (8) with respect
to the last N—1 angle variables. After rescaling t— (7{,)/ kgT,
s~ al,(N-D) _ u(N=1) o~ ~_ xal
and defining a= T M= » 0=000, and k= i1 We
obtain the mean-field equation for P(¢) (see Appendix A for
details; in the following, tildes on scaled quantities are sup-
pressed for brevity):

d &
a—tP(<P) = a—(sz(GD)

J 2
+ a—J o(@—¢')sin(¢ - ¢")P(@)P(¢")de’
doJy
d .
- ,U«IP[(Y sin 2¢ — 8 cos 2¢) P(¢)]

&
+ M&_goz[(l —vycos2¢—5sin 2¢)P(¢)]. 9)

We have introduced y=[cos2¢P(¢)de and &
=[sin 2¢P(¢p)d¢ as abbreviations for the second moments of
P(¢). The rotational drag coefficient is estimated in [35] as,
[, = ﬁ%, where L=10—15 um is the microtubule length,
b=24 nm is the microtubule diameter, and 7
=0.005 pNs/um? is the solvent viscosity. The time scale
associated with thermal fluctuations is computed to be
KyT/Z,=3%1073 s\,

Equation (9) is a nonlinear and nonlocal equation for the
probability density of the filament orientations, P(¢). It is
related to the binary interaction models of Refs. [14] in its
incorporation of rotational diffusion due to thermal effects
(given by the first term on the right-hand side) and motor-
induced interactions (proportional to the renormalized motor
strength «). However, previous models assumed a priori bi-
nary interactions, whereas Eq. (9) is effectively binary ex-
plicitly because of the approximation of independence of
particles. Moreover, the derivation used here is unique in that
it allows straightforward inclusion of the fluctuations in mo-
tor force. These are represented by the terms proportional to
the renormalized fluctuation strength w, which should in fact
be more important than the thermal effects for realistic con-
ditions.

The uniform density corresponding to P((p)=Piso=ﬁ
solves Eq. (9) upon application of the normalization condi-
tion [, (Z)WP(QD)d(pz 1. It represents an isotropic distribution of
rods. If the ratio of motor-mediated microtubule interaction
to diffusion in the system is large enough, the uniform state
loses its stability resulting in the onset of spontaneous orien-
tation. In this paper, we study the formation of oriented states
in two physical cases. In Sec. III we address the limit of
small force-dependent detachment rate, while in Sec. IV we
discuss the case of significant detachment rate.
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III. SMALL DETACHMENT RATE LIMIT

Motor forcing can be modeled as a single effective spring
force independent of the rate at which motors attach and
detach. This case is realized when the motor spring strength
is small (i.e., k<<1) or when the angle between interacting
rods is small (a limit that has been studied extensively in
Ref. [16]). In this limit, there is a constant average number of
motors per microtubule, oy, and consequently, Eq. (9) sim-
plifies to the following form:

s

2 plg)= FRLCE afp[@ cos ¢ 7, sin ¢)P(¢)]

4 .
- ,U«IP[(Y sin 2¢ — 8 cos 2¢) P(¢)]

&
+ ,u,é’—(pz[(l —vycos2¢—8sin2¢)P(p)], (10)

where 7,=[cos(¢)P(¢)de and 7,=[sin(¢)P(¢)de are the
first moments of P(¢). Note that Eq. (10) is still nonlinear
and nonlocal, since 7, Ty Vs and J are integrals containing
P(o).

We now can investigate bifurcations from the isotropic
state, Pi,,= ﬁ, by doing linear stability analysis. Looking for
solutions of Eq. (10) of the form P(go,t):ﬁ+g(go,t), where
s(e,r) is a small perturbation, and choosing s(¢,?)
o exp[\,t+ing] we get the following dispersion relations
for the growth rates \, of the angular Fourier modes n:

o

n|=1: M=o = (), (11)
In|=2: N=-3u-4, (12)
In|>2: N,=—n*(1+pu). (13)

Equations (11)—(13) indicate that perturbations with n= =1
grow provided that A;=%—(1+xu)>0. This yields a critical

« above which the instability occurs,
a>a.=2(1+pu). (14)

Both rotational diffusion and the motor-induced fluctuations
oy cause the higher harmonics to decay as —n?.

To study the nonlinear dynamics associated with the
growth of the first mode close to the instability threshold,
one can represent P(¢) as the isotropic state plus corrections
that evolve on the slow time scale of the growth rate near the
threshold,

t.=ét. (15)

We consider the following expansion:

1 ~ ~
P(()D9t) = E[l + €P1((P’t5) + 62P2((P’t5) +- “]9 (16)

with
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P, =Pi(t)e™¢ + P_i(1)e . (17)

Inserting this expansion into Eq. (10) and collecting coeffi-
cients of ¢ yields

P, =e3(A1P1 —gP2PT> +65§P3P;, (18)

€'P,=— E[P,(4+3u) — aP7] - €'aPsP], (19)

where the dot represents the derivative with respect to ¢, and
€A, =\,. To leading order in € we get

. a -
P1:A1P1—5P2P1’

0=—Py(4+3u) +aP. (20)

Solving for P, in Eq. (20) leads to a Landau-type equation
for the time evolution of the first Fourier mode

Pl =A\\P —A|P1|2P1 21)
with

a2

o
A=), A=—2—
1=y~ +w) 204+ 3u)

(22)

Since A >0 holds for all system parameters, the nonlinear
term is always stabilizing and Eq. (21) infers that the transi-
tion from the isotropic state to the polar oriented state is
continuous or second order. In the nomenclature of bifurca-
tion theory it is supercritical. Numerical analysis of Eq. (10)
above the stability threshold shows that the isotropic distri-
bution quickly evolves toward a single-peaked stationary dis-
tribution, as displayed in Fig. 2(a). This finding is consistent
with the well-aligned rod bundles found in previous models
based on binary interactions [9,36]. Figure 2(a) was gener-
ated using the method of finite differences with parameters
u=3 (implying a,.=8) and a=28. Figure 2(b) shows the bi-
furcation diagram for a> «,. The growth of P, displayed
indicates a continuous transition from the isotropic state (P
=P, and P;=0) to polar alignment P, # 0. The dotted line
represents the result from the Landau expansion, while the
solid line shows results from numerical integration of the
implicit steady-state solution given by Eq. (B3) [the analyti-
cal, implicit steady-state solution to Eq. (10) is derived in
Appendix B]. As one expects, the Landau equation predic-
tion is good near the threshold and becomes inaccurate with
increasing a—«,.

IV. FORCE-DEPENDENT DETACHMENT RATE

The formulation and analysis of Eq. (10) was based on the
assumption of a constant average number of motors per fila-
ment. In this section, we investigate the more general case in
which the force-dependent detachment rate is not negligible.
The exponential form of Eq. (5) indicates that the strength of
motor-induced interactions is greatly diminished when the
angle between interacting rods is large. Hence, one would
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(b)

FIG. 2. (Color online) (a) Single-peaked, steady-state distribution solving the small detachment rate master Eq. (10); the parameters used
to generate this distribution were u=3, «=28. (b) Bifurcation diagram showing the continuous, supercritical transition to the aligned state.
As the theory predicts, the Landau approximation matches well with the numerical data near the stability threshold and departs from it as the

magnitude of a—a, grows.

anticipate the formation of multiple steady-state rod bundles
of disparate orientation similar to those found and studied
extensively in Ref. [16]. Furthermore, with the inclusion of
the detachment dependence, one would expect a more com-
plex transition to alignment due to the nonlocal, motor-
induced alignment term, i.e., the term proportional to « in
Eq. (9).

The general master equation, given by Eq. (9), is highly
nonlinear, and the convolutions in the integral term indicate
that analysis is more convenient in Fourier space. Consider
the Fourier harmonics of P(¢) given by

2
m=f Plg)e™™e.  (23)

1 .
P((P) = _2 P”e”‘“’a’
2 n 0

Substituting Eq. (23) into Eq. (9) yields equations for the
Fourier coefficients P,,

. 1
Pn == nZPn(l + /J’) + Eanz Pn—kPk(CIk—l - Qk+l)
k

2
un un
- ?(Pn—ZPZ_ P,2P_5) + T(Pn—2P2+ P,,P_,),
(24)

where we have defined

1 2
Qk=;j0 exp| - K

Now, as in Sec. III, we search for the unstable angular wave
modes near the isotropic state. Linearizing Eq. (24) about the
isotropic state yields again the growth rates A, of the nth
angular mode,

sin<;—o> ‘ - ik(p}dqo. (25)

an
|I’l| ia 2:)\n = ?(qn—l - qn+1) - n2(1 + M), (26)

n| =2:N.p=algs) —g+3) —4=3pu. (27)

In the case of negligible force-dependent detachment, ¢;=0
holds with the exception of gy=1 and we regain the result of
Sec. 11, Egs. (11)-(13). However, for non-negligible force-
dependent detachment, Egs. (26) and (27) indicate that sev-
eral modes may lose stability, depending on the magnitude of

the motor strength parameter «, the values of the ¢, and the
motor noise parameter w. This was not the case for the limit
of small detachment rate, in which only the first mode could
lose stability.

Furthermore, one can demonstrate the occurrence of both
supercritical and subcritical bifurcations from the isotropic
state. This can be motivated by again deriving a Landau
equation using the procedure introduced in Sec. III, to get

P1=A1P1—A|P1|2P1+R, (28)
2
— N + —
_ (9= 9)(g2= g0+ C]3)’ (29)
(g1 —q3) —4-3u]
(04
A= 5(6]0 -q)—1-p, (30)

where R represents higher order regularizing terms. These
have to be included in the subcritical case A <0, where the
lowest order nonlinearity of the Landau equation is insuffi-
cient to get amplitude saturation. They can be calculated but
are not specified here. In Eq. (28), both the instability thresh-
old A, and the nonlinear Landau coefficient governing
whether the transition is supercritical (A>0) or subcritical
(A<0) depend on the values of the g;. They have to be
computed approximately using known parameter estimates.
We have E:%, The motor spring constant « has been mea-
sured to be 200-400 pN/um for kinesin motors [31]. For
the molecular length scale a, one usually assumes a few nm
[29,30]. The parameter [, which represents the average dis-
tance from the point of motor attachment to the filament
intersection, can E)e estimated to be about 100 nm [22]. This

indicates that kB_T:S_IO at room temperature; we use a

value of 5.1 to compute the g, terms and write down the
simplified Landau coefficients as

_128X107%7
T 2(0.352a-4-3u)’

Ay =0.176a—1- p.

The coefficient A changes sign depending on the relationship
between the motor-induced alignment strength a and the mo-
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FIG. 3. (a) Steady-state distribution obtained from numerical treatment of Eq. (9) with parameters: a=16 w=2. (b) Bifurcation diagram
showing the stable states with nonzero mean orientation associated with the supercritical (3) and subcritical (2) transitions from the isotropic
state. The stable branch (5) was calculated for the limiting case of zero diffusion. The dotted branches (1) and (4) show estimates of the

repelling branches associated with the subcritical transitions.

tor noise w. This suggests that there exists a qualitative dif-
ference in the transition to alignment depending on the pa-
rameter selection, which is supported by numerical
simulations of Eq. (9). Figure 3(a) shows a long time ori-
ented state for =16 and u=2. The peak is steeper, i.e., the
orientation is more perfect, as compared to that found in the
small detachment rate case. This is caused by the subcritical-
ity. Figure 3(b) shows both a continuous bifurcation as well
as a subcritical bifurcation from the isotropic state for fluc-
tuation strengths =1 and u=2, respectively. As a common
feature of subcritical transitions, the stable branch below the
linear stability threshold indicates a type of hysteresis in
which an oriented state exists below threshold, depending on
the initial conditions. The subcritical transition for u=10
was calculated for the limiting case of zero thermal effects
(i.e., rotational diffusion D,=kgT/{,—0 or T—0). As the
motor forcing strength is known to be 3—4 times the noise
amplitude [33], the following relationship holds for the
renormalized parameters: a=3\u. We can thus conclude
that the limit of vanishing thermal effects is always subcriti-
cal for reasonable parameters of « (1 <x<10), @, and pu.

V. CONCLUSIONS

In this paper we presented and analyzed a model for the
motor-induced self-organization of microtubules in a semidi-
Iute filament solution. Since previous binary interaction
models [9,14,16,36] are insufficient in the semidilute limit,
we used a mean-field formulation in which any given fila-
ment interacts with all other filaments in motor contact. We
incorporated both additive noise associated with thermal
fluctuations and multiplicative noise describing small scale
fluctuations in motor forcing and additionally accounted for
force dependence in the detachment kinetics of the motors.
With this approach we found that an initially disordered sys-
tem exhibits an ordering instability resulting in the onset of
well-aligned rod bundles, a finding that is consistent with
previous binary interaction models.

The structures found experimentally in cytoskeletal solu-
tions such as asters, vortices, etc. are the defects of a homo-
geneous polar phase [9]. It has been suggested that this polar
phase is unstable in spatially inhomogeneous solutions [37].
In our model, however, we study spatially homogeneous in-

teractions and explore the mechanism by which the polar
phase arises out of an isotropic semidilute solution. In the
present work we were able to show that the isotropic-polar
transition can be second or first order, depending on physical
quantities such as motor strength, motor number, and motor
force fluctuations.

The Fokker-Planck equation derived from the mean-field
model for the alignment of rods is discussed in two physical
limits. In the case of small detachment rate, we show ana-
lytically and numerically that an instability exists if the mo-
tor force exceeds a critical value. As a result, the system
undergoes a continuous, second-order transition from the iso-
tropic state to the polar aligned state. This type of bifurcation
is found in passive liquid crystal systems [23], where, by
contrast, the symmetry is apolar. The asymptotic formulation
of the Landau equation showed good agreement with the
numerical data near the stability threshold. Since motor
forces can be significant when many motors are attached to
filaments, we accounted also for the more general case of a
force-dependent detachment rate of motors. In this case, we
showed that first- and second-order transitions to alignment
exist when motor forcing dominates random forcing fluctua-
tions. The existence of a subcritical branch is shown to be a
function of the motor spring strength and the ratio of motor
forcing to motor and thermal noises. At the moment we are
not aware of experimental validations for the subcritical sce-
nario. However, our model predicts ordering hysteresis for in
vitro experiments on alignment dynamics in semidilute and
dense solutions of biological filaments.

Several open questions remain. First, the question of
when and under which conditions the isotropic-to-polar tran-
sition is second or first order should be investigated and
clarified experimentally. Second, usually in vitro systems dis-
play defect structures such as asters and vortices [3-5] as
opposed to a homogeneous polar state. In our work, we did
not yet consider spatial variations in microtubule or motor
density. With the inclusion of spatial inhomogeneity, one
could explore the critical parameter space at which the iso-
tropic state loses stability and derive a system of Ginzberg-
Landau equations for the mean-field approach, in a similar
fashion to Aranson’s and Tsimring’s [14] binary interaction
model. Furthermore, we did not address the dynamics of
bundle interaction in the present model. While obtaining a
complete description of the underlying orientational dynam-
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ics remains a difficult task, a study of long term bundle dy-
namics is a reasonable endeavor. Previous models of micro-
tubule interaction have shown slow logarithmic coarsening
of bundles into fewer orientations [16].

While our analysis is problem specific, we believe that the
mean-field approach used in this paper is applicable to many
other physical systems in which active interactions promote
ordering. A few examples include rod-shaped swimming
bacteria or vibrated granular rod systems. Further investiga-
tion and modifications of our models could provide deeper
insight into other physical processes as well.
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APPENDIX A: FOKKER-PLANCK EQUATION AND
EQUATION FOR THE SINGLE-PARTICLE
DISTRIBUTION FUNCTION

For the Langevin equation of the form

N
=A(@) + 2 Bul9)&, (A1)
k=0

with coefﬁcients A= E sin(e— @)y, Bj= sm(go, @),

Bjo= g’ we can write down the Fokker-Planck equatlon for

the N-particle distribution function PM (@1, @, ...y, in
the Stratonovich sense, as
N
apw™ d
s [arls s B )P
Jt i=1 0P 255 k=0
e w d
+-2 2 2 [ BuBPM. (A2)
2551 =1 9Pik=0 99;

From Eq. (A2), we derive an equation for the single-particle
distribution function P(¢)= P"(¢), which is a marginal of
PV e, P(@)=PN (@, @, ....o0dexdes, ... dey. Inte-
grating both sides of Eq. (A2) with respect to the last N—1
orientations and imposing periodic boundary conditions
leads to

N
P al g
(;—t=a?:"f0 M([E[mn(@ 0)]o(e- @,)]P(N))dlzvqo

£ f J [E —{[sin(¢ - @ 3P ] dy¢

2{ dQ| =1 I¢
2 (92
+ 2 (2[sm(¢ gok)]ZP(N))dN
gr ﬁ(p k=1
kT (2™ #PW
+ 2= —dyo (A3)
gr 0 a
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Now we apply a mean-field approximation by assuming in-
dependence of particles. Hence, we can write the N-particle
distribution function P™Y) as a product of single particle func-

tions P(¢).
24 o, (N=1)  —  u(N-1) ~
Rescaling tl%k 7 T WT
=00, and K= k T ylelds after some manipulations (tildes are
removed for snnphmty)

P PP a{

and defining a=

___+a_

2
PRy ﬂwf [sin(¢ - ¢")]o(e

0

- GD/)P(QD)P(QD,)CZQD'}

102|229}
do 2 ) '

+2,u {[cos (,DT +sin? @7 —sm(2<p) T]P}.

(A4)

For brevity we have introduced the following abbreviation
for the average with respect to P(¢):

2T
f= f F@P(@)dep. (A5)
0

The observable of interest in the state of self-organized an-
isotropy is the mean orientation 7 with components 7, and 7,
defined as follows:

2
?x=f cos(@)P(@)do,
0

2
T, = f sin(@) P(@)d¢. (A6)

0
The other moments occurring are

2

- 1

ﬁ:j cos® pP(p)dp= S+,
0

2

_ ) 1

7= J sin® oP(@)dep = SI=7,
0

and

2 1
Ty =f cos ¢ sin eP(@)dp = 55,

0
where y=f§”cos 2¢0P(¢)d and 5=f%”sin 2¢P(p)dp are the
second moments. Substituting the previous definitions into

Eq. (A4) gives the dimensionless mean-field equation, Eq.
(9), for P(¢).

APPENDIX B: IMPLICIT STEADY-STATE SOLUTION
FOR THE CASE OF SMALL DETACHMENT RATE

Equation (10), for the case of small detachment rate, can
be simplified by rotating the coordinate system so that 7,
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=0. Numerics indicate that solutions take the form of bumps
symmetric with respect to a given ¢ indicating that solutions
are even. Hence, we also make the simplification 6=0. Inte-
grating Eq. (10) for the stationary case results in

oP
C=[asin o7, + uysin 2¢|P + u(l — ycos 2¢ + ,u_l)a—.
¢

(B1)

The integration constant C can be put to zero: if we integrate
Eq. (B1) with respect to ¢ for ¢=0,...,2m, the right-hand
side vanishes (integrate the second term by parts). Now let
h(@)=u(1=ycos 2¢+u~"). Then h'(@)=m(2y sin 2¢), and
we get

PHYSICAL REVIEW E 79, 036207 (2009)

1 oP
O:[a sin (p?x+—h’(cp)]P+h(cp)—. (B2)
2 dep

Equation (B2) can be solved by separation of variables [note
that we can divide the equation through by h(¢) because
h(@)>0 for all ¢]. Solving for P(¢p) yields

arctanh(%)
aT, V2y(1+y+uh)
Pl V2y(I+y+p™")

NI+ uf1-ycos(2¢)]

P(p) = , (B3)

where c is a constant of integration that has to be fixed by the
normalization condition [ %”P((p)d<p= 1.
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